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The role of mitochondrial oxidative stress in hearing loss  
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Abstract
Hearing loss is the most common form of sensory impairment in humans, affecting 5.3% worldwide population. Although approximately 1 in 500 children are 
born with impaired hearing, sudden or progressive forms of hearing loss can manifest at any age. Hearing impairment following cochlear damage due to noise 
trauma, ototoxicity or age‐related cochlear degeneration was linked to a common pathogenesis involving the formation of reactive oxygen species (ROS). This review 
summarizes the current data suggesting a role of mitochondrial ROS overproduction in hearing loss and the molecular mechanism involved in hair cell apoptosis 
responsible of this disorder. Because increasing number of studies demonstrated that antioxidants and free radical scavengers may serve as effective compounds to 
block the activation of cochlear hair cell death, targeting members of antioxidant pathways and in the breakdown of superoxide anions and hydrogen peroxidase, could 
be feasible options for the treatment of several types of hearing loss.
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Highlight
- ROS overproduction plays a key role in hearing loss

- ROS induce mitochondrial damage and cochlear hair cell apoptosis

- Antioxidants as effective therapeutic agents for hearing disorders

Cochlea and hair cells 
The mammalian cochlea is the sensory organ capable of perceiving 

sound over a range of pressure, and discriminating both infrasonic and 
ultrasonic frequencies in different species. The organ of Corti is located 
in the cochlea of the inner ear and is responsible for the detection of 
sound. This organ harbours the auditory sensory epithelium, which, 
in humans, contains approximately 16,000 hair cells that are patterned 
into three rows of outer hair cells (OHCs) and one row of inner 
hair cells (IHCs) [1,2]. Each hair cell contains, at its apical surface, a 
mechanically sensitive organelle that consists of rows of actin-filled 
stereocilia that increasein height. An extracellular matrix, the tectorial 
membrane, covers the apical surface of the organ of Corti and is 
attached to the hair bundles of OHCs. The cell bodies of hair cells form 
specialized adhesive contacts with supporting cells that adhere at their 
basolateral surfaces to the basilar membrane, an extracellular matrix 
assembly with a different molecular composition from the tectorial 
membrane [3,4]. 

Hearing is initiated when sound waves that reach the outer ear 
travel through the ear canal to the tympanic membrane. Then, the 
sound energy is transferred, via the bony ossicles of the middle ear, 
to the oval window at the base of the fluid-filled cochlea. The motions 
of the oval window are converted into fluid pressure waves that 
induce vibrations in the basilar membrane. Then, the vibrations are 
transferred onto the hair cells, leading to the deflection of the hair cell 
stereocilia [5]. This deflection causes stretch-sensitive ion channels to 
open. These are non-selectively permeable to cations and are located 
at the base of the tip links, with 1 or 2 channels per tip link. Stereocilia 
bathe in endolymph, which is rich in potassium and characterized 
by an endocochlear potential of +80 mV, but the hair cell body has a 
potential between -70 mV and -55 mV. As a result, the electric potential 
between the endolymph and the hair cell body (between 135 and 150 

mV) causes a massive influx of potassium ions from the endolymph to 
the hair cell when the mechanically-sensitive ion channels open [6]. 
The depolarization of the IHCs causes L-type voltage-sensitive calcium 
channels located near the regions of afferent synapses to open. Each 
active region in characterized by the presence of an electron-dense 
structure called a synaptic ribbon. This synaptic ribbon is anchored 
to the plasma membrane and surrounded by synaptic vesicles which 
contain glutamate. 

In the same way as for the IHCs, acoustic vibrations cause motion 
of the stereocilia of the OHCs, which in turn causes a modulation 
in cellular potential. However, in contrast to what happens in the 
IHCs, variations in the OHC’s potential causes them to change shape. 
When they depolarize they become shorter, and become longer at 
repolarization. These changes in the length of the OHCs are caused by 
voltage-sensitive changes in the shape of prestin that is abundant in the 
cellular membrane [7]. OHCs therefore have a role of oscillators that 
cause localized amplification of the basilar membrane. The opening 
of these transduction channels leads to hair cell depolarization and 
to the release of neurotransmitters onto afferent neurons, which form 
synapses with hair cells. The electrical signals are propagated through the 
nervous system and processed in the brainstem and auditory cortex [7]. 

Mitochondria and Reactive oxygen species (ROS) 
Mitochondria are the main ATP power house in eukaryotic cells. 

This is not the only cellular way to obtain ATP as the glycolytic process 
in the cytosol also produces it, albeit with less efficiency [8]. Beside this 
ATP production, mitochondria are used for other cellular functions: 
they participate in programmed cell death [9], the homeostatic 
control of calcium and iron concentration [10], and the control of 
autophagy [11]. 
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In addition, mitochondrial respiration produces reactive oxygen 
species (ROS). These free radicals include the superoxide anion (O2·−), 
hydrogen peroxide (H2O2), and the hydroxyl radical (OH) and have 
essential role in cell signaling [12]. Under normal conditions, ROS 
produced by the mitochondria are easily metabolized or scavenged by 
endogenous antioxidant mechanisms as catalase, superoxide dismutase 
and glutathione, and balance cell homeostasis. However, aging process, 
pharmacological treatment or external factors can alter this balance 
and this imbalance is called oxidative stress [13]. 

ROS are very unstable species, reacting with other molecules 
and thereby damaging proteins, lipids and DNA [14]. In this way, 
ROS generated by mitochondria are hypothesized to damage key 
mitochondrial components, such as mitochondrial DNA (mtDNA), 
mitochondrial membranes, respiratory chain proteins, and nuclear 
DNA that affect mitochondrial function [15]. ROS-induced damage 
has the potential to alter electron transport chain function and decrease 
the efficiency of ATP production. Moreover, several studies proposed 
the free radical theory of ageing, which suggested that free radicals 
can affect and are possibly the cause of the ageing process of animals 
[16]. This creates a “vicious cycle” in which ROS production from 
the mitochondrial electron transport chain is able to cause damage 
to the mtDNA found in close proximity. Because mtDNA encodes 
the majority of mitochondrial proteins, errors in gene expression 
of mtDNA may result in dysfunctional mitochondrial subunits. 
Dysfunctional mitochondria are then thought to contribute to further 
ROS leakage due to their inefficiency, which could then exacerbate 
mtDNA damage in a continuing vicious cycle [17,18]. 

Hearing loss 
Hearing loss is the most common form of sensory impairment in 

humans, affecting 360 million persons worldwide, with a prevalence 
of 183 million adult males and 145 million adult females. In 
nonsyndromic deafness, only hearing function is noticeably altered, 
whereas syndromic deafness is accompanied by other physiological 
defects. Although approximately 1in 500 children are born with 
impaired hearing, sudden or progressive forms of hearing loss can 
manifest at any age [19]. 

Hearing loss can be caused by environmental factors, such as 
exposure to noise or ototoxic chemicals, or by aged related senescence. 
Traumatic injury, such as injury caused by exposure to an explosion or 
to the firing of a gun, can lead to sudden hearing loss. Sometimes this 
hearing loss is accompanied by the perception of a constant ringing 
noise called tinnitus [20]. Moreover, genetic factors as mutations in 
MT-TS1, MYO7A or ACTG1 genes [21-23], between many others, 
have already been linked to nonsyndromic hearing loss. Identification 
of these genetic defects that cause hearing impairment has been 
instrumental in the discovery of molecular pathways that are involved 
in the regulation of auditory perception. Knowledge of these pathways 
provides a starting point for the development of therapeutic options for 
individuals that are affected by hearing impairment. Exciting advances 
in regenerative medicine and gene therapy offer potential alternative 
routes for restoring lost auditory function or for slowing down its 
progression. 

Noise exposure is responsible for approximately 10% of hearing 
loss in adults, in particular military veterans [24]. Short impulses of 
high intensity noise such as a gunshot or explosion can trigger sudden 
hearing loss, which is generally irreversible and associated with 
structural damage to the auditory system. Susceptibility to damaging 
effects of noise differs remarkably among individuals, which indicates 

that genetic factors might be important in disease development. Gene 
association studies using candidate-gene approaches have focused 
mostly on genes that are linked to oxidative stress, K+ recycling and 
the heat shock response. Interestingly, the gene encoding catalase, an 
enzyme involved in oxidative stress reduction, appears to be directly 
linked to acquired and inherited hearing loss [25].  

On the other hand, various chemical agents as aminoglycoside 
antibiotics, platinum- containing chemotherapy agents and 
nonsteroidal anti-inflammatory drugs as aspirin are ototoxic [26,27]. 
For example, aminoglycosides, antibiotic with broad spectrum activity, 
cause significant hearing loss, with estimates of a 20–50% chance of 
incidence when treating acute infections [28,29]. Hair cells are readily 
damaged by this compound probably due the similarity of hair cell 
mitochondrial ribosomes to their bacterial counterparts [30]. Also, 
compounds as cisplatin and carboplatin are extremely ototoxic, 
particularly in children. The role of platinum drugs is the induction of 
cancer cell apoptosis by DNA genomic cross-linking. However, hair 
cells seem to be highly sensitive to this apoptosis, probably due to their 
selective drug 5 transport [31]. 

Finally, the most common form of sensory impairment in older 
people is the age-related hearing loss [32]. This disorder is characterized 
by symmetric sensorineural hearing loss that starts at high frequencies 
with a prevalence of 35% of individuals over 65 years of age [33]. 
Although hearing loss has been considered to be part of a natural 
ageing process, not all humans suffer from age-related hearing loss; 
heritability studies suggest that the source of variability is both genetic 
and environmental. Interestingly, statistical studies have established 
associations between age-related hearing loss and genes linked to ROS 
detoxification, such as arylamine N-acetyltransferase 2 and glutathione 
S-transferase [34-36]. Other mitochondrial genes as Mitochondrial 
Uncoupling Protein 2 have also be linked to this disorder [37]; strongly 
confirming an essential role of mitochondria in hearing loss. 

Mitochondrial ROS in hearing loss 
As mentioned before, mitochondria play a key role in ROS 

generation, and mutations in genes that affect mitochondrial function 
have been linked to genetic forms of hearing loss.  Increasing number 
of studies demonstrated that hearing impairment following cochlear 
damage due to noise trauma, drug ototoxicity or age‐related cochlear 
degeneration is directly linked to a common pathogenesis involving the 
formation of ROS [38-41]. In this way, some studies demonstrated that 
age-related loss of cochlear hair cells was accelerated in Sod1 mutant 
mice [42], whereas guinea pig overexpressing catalase in their cochlea 
significantly protected hair cells and hearing thresholds after ototoxic 
treatment [43].  

Cochleae are extremely vulnerable to oxidative stress because of 
the high metabolic demands of their mechanosensory hair cells in 
response to sound stimulation. Normally, ROS produced by hair cell 
mitochondria during physiological conditions are scavenged by hair 
cell endogenous antioxidant mechanisms. However, when excess ROS 
following noise overstimulation or ototoxic drug insults overwhelm 
the hair cell antioxidant defenses, elevated ROS concentration leads to 
genetic and cellular alterations which cause cellular dysfunctions such 
as lipid peroxidation, polysaccharide depolymerization, nucleic acid 
disruption, oxidation of sulfhydryl groups, and enzyme inactivation, 
consequently leading to permanent cochlear degeneration [44,45]. This 
increase of ROS also induces impaired blood flow to the cochlea, fused hair 
cell stereocilia and degeneration of supporting structures and nerve fibers; 
degenerative changes are also observed in the stria vascularis [46]. 
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It is well known that mtDNA is particularly sensitive to oxidative 
damage because of the lack of protective histones. The mtDNA 
mutations will accumulate and expand with cell division, thus 
contributing to age-related diseases [47]. And evidence shows mtDNA 
mutations and mitochondrial dysfunction are involved in the aging 
and several diseases among which we find hearing loss. MtDNA 
mutations comprise point mutations, insertions and deletions. The 
constant mitochondrial turnover is crucial for maintaining normal 
function of mitochondria with age, especially for the post-mitotic 
nature of cells in cochlea. An essential role of mtDNA is the balance 
regulation of mitochondrial biogenesis, degradation, and fusion/
fission ratio [48], among other functions. In this way, the oxidative 
damage of hair cell mtDNA could be the responsible of mitochondrial 
dysregulation and then the induction of hair cell apoptosis [49,50] 
(Figure 1). Corroborating this hypothesis, Menardo and collaborators 
demonstrated  that mitochondrial biogenesis, characterized by ratio of 
mtDNA/nuclear DNA and activity of  mitochondrial citrate synthase, 
was increased at young age and decreased at old age in  senescence-
accelerated prone mouse 8 (SAMP8), quite opposite to the senescence- 
accelerated resistant mice 1 (SAMR1) [40], suggesting that hair cells 
attempted to maintain  normal mitochondrial function by strong early 
but limited stimulation of mitochondrial biogenesis. 

The most important proteins mediating cell survival decisions at 
the level of the mitochondria are the members of the Bcl-2 family. 
Bcl-2 family members act upstream of caspase activation and serve as 
checkpoints in the regulation of apoptosis. Bcl-2 is localized primarily 
to the outer mitochondrial membrane, where it functions to inhibit 
cytochrome c release and preventing optotic pathway activation [51]. 
Cunningham and collaborators demonstrated that bcl-2 protein is 
present in the hair cells of the inner air and that overexpression of 
bcl-2 in transgenic mice increased hair cell survival after neomycin 

treatment. Furthermore, Bcl-2 overexpression reduced active caspase-9 
positive hair cells and apoptotic pathway activation compared to wild 
type [52]. ROS overproduction leads to a down-regulation of bcl-2 
[53], for this reason several groups proposed that the oxidative stress 
could also induce apoptotic pathway activation in cochlear hair cell by 
bcl-2 inhibition [54] (Figure 1). 

As mentioned before the hearing system involves high-energy-
demanding metabolic processes and creatine plays an important role 
in maintaining this energy supply in the cochlea as demonstrated using 
a creatine kinase knockout mouse model that exhibited preferential 
high-tone hearing loss [55]. Besides its role in energy replenishment, 
creatine also exerts a strong antioxidant effect by reducing the intra-
mitochondrial production of ROS, as well as elevating and preserving 
the mitochondrial membrane potential [56]. Moreover, increase of ROS 
production in hair cells leads to the inhibition of enzymatic creatine 
kinase activity leading to an imbalance of creatine phosphorylation 
(Figure 1) and deficiencies in energy supply in hair cell stereocilia. Since 
oxidative damage caused by ROS has become a common athological 
cause involved in several types of hearing loss, creatine supplements 
are believed to improve the mitochondrial antioxidant defense system 
and maintain optimal energy homeostasis [57]. 

Finally, some studies proposed that a nuclear pro-apoptotic 
signaling pathway could also play a key role in hair cell apoptosis. It 
is well known that the nuclear transcription factor p53 is activated by 
oxidative DNA damage and that activation of p53 can trigger apoptosis 
in a wide range of cell types [58]. In response to oxidative cell stress, 
p53 rapidly translocates to mitochondria and directly binds to Bak 
and induces its oligomerization, leading to cytochrome c release and 
then apoptotic pathway induction [59]. Dr Salvi group demonstrated 
that p53 is activated in hair cells following cisplatin exposure, while 

Figure 1. Molecular mechanism of mitochondrial ROS apoptosis. ROS overproduction in hear cell induce mtDNA deletion leading to mitochondrial dysfunctions. Also increase of ROS 
concentration impair hair cell metabolism by phospho-creatine imbalance and increase p53 transcription factor expression leading to mitochondrial cytochrome C release and hair cell 
apoptosis 
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deletion of p53 protects hair cells from the same drug-induced cell 
death [60,61]. So, in response to oxidative DNA damage caused by 
mitochondria-derived ROS in the aged cochlea and other target tissues, 
p53 may translocate to mitochondria and activate Bak, leading to Bak-
mediated hair cell mitochondrial apoptosis (Figure 1). 

Antioxidant treatment for hearing loss 
Accumulating evidence demonstrated that antioxidants and free 

radical scavengers may serve as effective therapeutic agents to block 
the activation of death mechanisms induced by Ros overproduction, 
including the auditory system [62]. Therapy for hearing loss mediated 
by ROS overproduction is most likely to be successful during the early 
stages of disease progression, when structural damage and hair cell 
loss is limited.  Some clinical and military trials have been carried out 
for temporary threshold shift, in which administration of antioxidant 
nutritional supplements, such as Mg2+ or vitamin B12, before 
moderate noise exposure showed some beneficial effects [63, 64]. 
Animal models have been useful for assessing whether counteracting 
the effects of ROS might be of therapeutic value. Antioxidants, such as 
glutathione, d-methionine, resveratrol and ascorbic acid, all attenuated 
noise-induced hearing loss in animal models when given before noise 
exposure [65]. 

Interestingly, as mentioned before polymorphisms in the gene 
encoding catalase have been linked to an increased susceptibility to 
hearing loss in humans, and mice that are heterozygous for a mutation 
in Sod1 gene show an increased vulnerability to hearing loss induced by 
noise exposure [42]. These genetic findings provide additional evidence 
that antioxidant treatment might be crucial for maintaining and 
recovery of normal hearing under loud noise conditions.  In this way, 
targeting members of antioxidant pathways, including the enzymes 
that are involved in glutathione metabolism and in the breakdown of 
superoxide anions and hydrogen peroxidase, could be feasible options 
for the treatment of several types of hearing loss. 

Conclusions 
Increasing number of publications demonstrated that 

mitochondrial ROS production plays a key role in hearing loss by hair 
cell apoptotic pathway activation. Major ROS production pathway 
include oxidative phosphorylation dysfunction, nuclear transcription 
factors activation, mtDNA damage, decreased anti-ROS enzyme 
activity, etc. Other pathways, such as endoplasmic reticulum stress 
and necrotic cell death could also be involved in this disorder, but 
further studies of each type of hearing loss are required including the 
investigation of ROS mechanism, apoptotic pathway and other types 
of cell death.  

Moreover, the effect of antioxidant supplementation in the 
prevention of hearing loss is presently controversial and inconclusive. 
Development of effective technique for antioxidant therapy in hearing 
loss requires an understanding of hair cell oxidative stress mechanisms 
underlying this hearing loss that may overcome this obstacle by 
opening doors to new treatment options.  
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